

UPDATE FROM AASLD 2014

Case 1: A 52-year-old man with HCV genotype 1b and ascites

- LF, 52-year-old Hispanic male with known cirrhosis
- Cirrhosis on liver biopsy in 2007
- Treatment failure PEG / RBV null response
- 2012 new onset ascites, controlled with diuretics
- 2013 encephalopathy, started on lactulose and rifaximin
- 2014 ascites requiring paracentesis every 4–6 weeks
- Past history:
 - Diabetes for 3 years
 - Alcohol abuse none since 2007
- Medications:
 - Metformin 1 gm/day
 - Aldactone 200 mg, Lasix 80 mg
 - Rifaximin 550 mg bid
 - Lactulose 30 cc tid
 - Nadolol 20 mg/day

Social History:

- Alcohol 1–2 units per week
- History of IVDU 35 years ago
- Nonsmoker for 35 years

Physical exam:

- BP 95/566; BMI 29
- 3-finger splenomegaly
- Ascites

Investigations:

- CBC: WBC 2.8/μL, neutrophils 1.2/μL
- HgB 11.3 g/dL
- Platelets 43,000×10³/μL
- Albumin 2.6 g/dL, INR 1.7, bilirubin 2.3 mg/dL
- Creatinine 1.6 mg/dL

Investigations:

- Ultrasound shows coarse liver and enlarged spleen, 15.3 cm
- MRI nodular liver, no enhancing lesions, 3-cm hemangioma
- Ascites moderate
- FibroScan 44.7 kPa
- Endoscopy Grade 3 varices

Summary:

- Child-Pugh 9
- MELD 15
- CrCl 48 mL/min
- Prior PEG/RBV failure

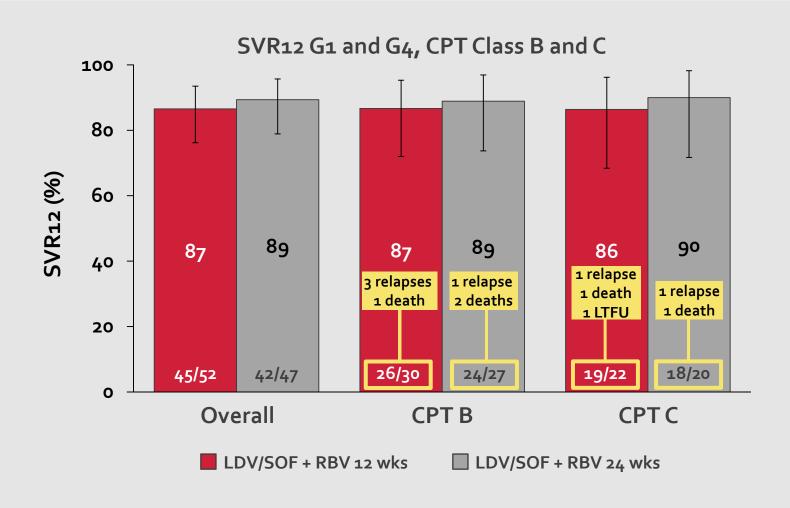
Questions

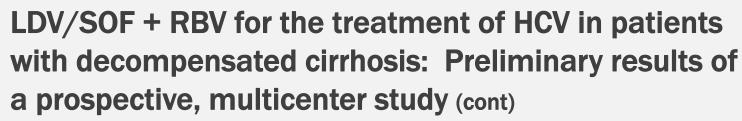
- 1. Would you treat this patient?
- 2. Does he meet the current criteria for prioritization for treatment?
- 3. Are Child-Pugh of 9, MELD 15, and CrCl a contraindication to any treatments?
- 4. Would you use RBV?
- 5. What outcomes can we expect? SVR? Improved liver function?
- 6. Instead, should the patient be put on transplant list and treated post-transplant?

UPDATE FROM AASLD 2014

Decompensated Cirrhosis and Post-transplant

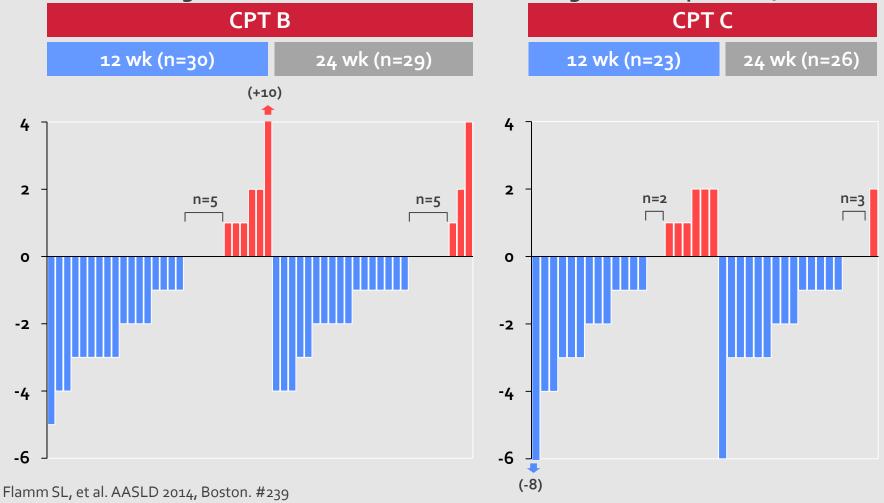
LDV/SOF + RBV for the treatment of HCV in patients with decompensated cirrhosis: Preliminary results of a prospective, multicenter study

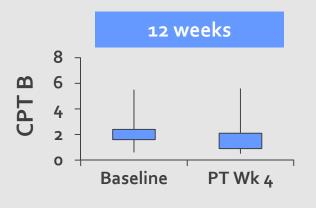


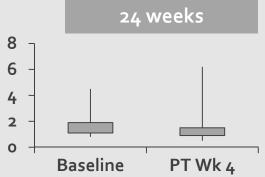


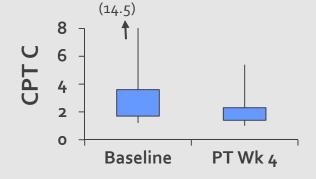
- 108 patients randomized 1:1 to 12 or 24 weeks of treatment
- G1 or G4 treatment-naïve or treatment-experienced patients with decompensated cirrhosis
 - CPT class B (7–9) or C (score 10–12)

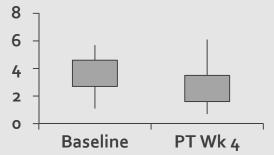
LDV/SOF + RBV for the treatment of HCV in patients with decompensated cirrhosis: Preliminary results of a prospective, multicenter study (cont)



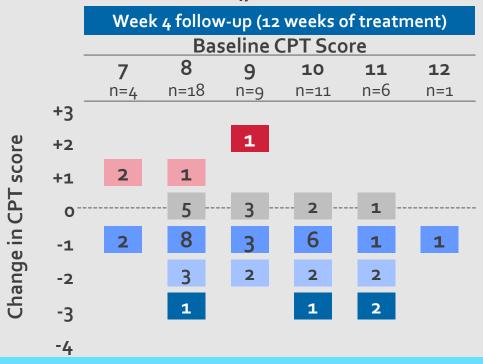

Change in MELD score from Baseline through follow-up Week 4




LDV/SOF + RBV for the treatment of HCV in patients with decompensated cirrhosis: Preliminary results of a prospective, multicenter study (cont)



Median total bilirubin (CPT B/C): Change from Baseline to follow-up Week 4

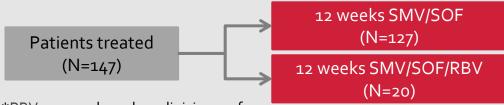


LDV/SOF + RBV for the treatment of HCV in patients with decompensated cirrhosis: Preliminary results of a prospective, multicenter study (cont)

Change from Baseline in CPT scores
G1 and G4, CPT Class B and C

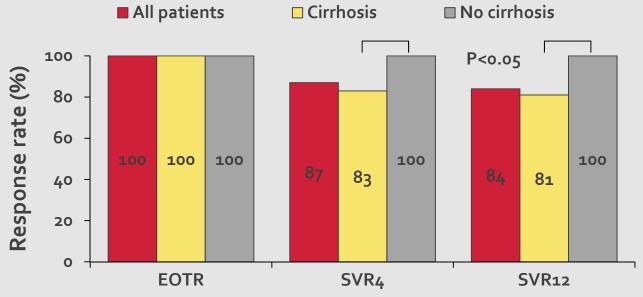
- LDV/SOF + RBV for 12 weeks: high SVR12 in HCV patients with G1 and G4 and advanced liver disease
 - Extending duration to 24 weeks did not increase response rate
- Virologic response was associated with improvements in bilirubin, albumin, MELD and CPT scores in both CPT class B and C patients
- LDV/SOF + RBV for 12-24 weeks was safe and well-tolerated in CPT class B and C patients

The use of SMV and SOF to treat HCV G1 in the liver transplant setting: The experience in 3 US centers

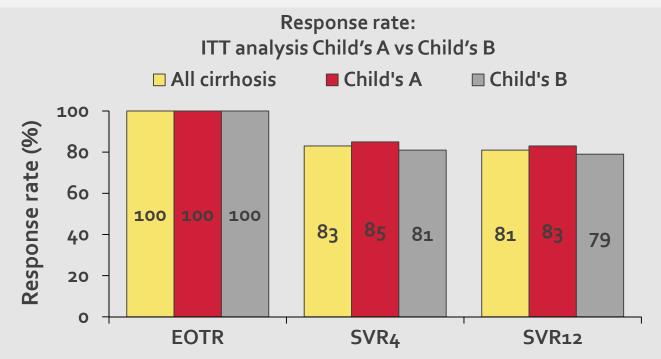

Patient characteristics (N=147)

Mean age (range)	59 years (47–7)		
Male, n (%)	90 (61)		
Listed for transplant, n (%)	93 patients (63)		
Median MELD (range)	12 (7–17)		
HCV genotype 1a, n (%)	103 (70)		
eGFR >30 mL/min, n (%)	147 (100)		
Treatment status			
Naïve, n (%)	51 (35)		
Treatment experienced, n (%)	96 (65)		
Peg/RBV, n	69		
Peg/RBV/PI, n	27		
Cirrhosis, n (%)	114 (78)		
CTP A/B, n (%)	80/20		
IL-28 status			
CC genotype, n (%)	31 (21)		
Non-CC genotype, n (%)	77 (52)		
Missing genotype, n (%)	39 (27)		

The use of SMV and SOF to treat HCV G1 in the liver transplant setting: The experience in 3 US centers (cont)



*RBV use was based on clinician preference


Response rate:

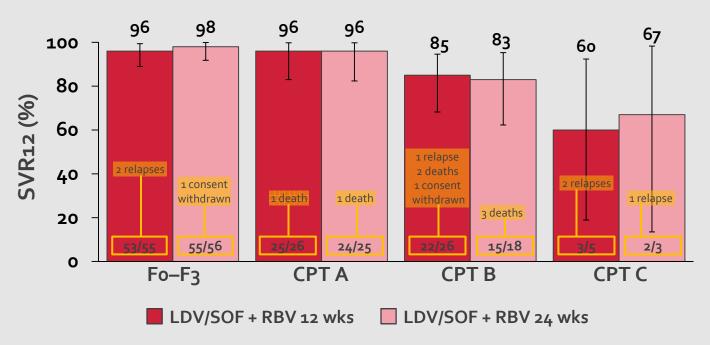
ITT analysis cirrhosis vs no cirrhosis

The use of SMV and SOF to treat HCV G1 in the liver transplant setting: The experience in 3 US centers (cont)

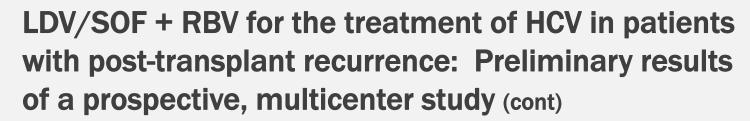
- No difference in response rate:
 - RBV vs no RBV
 - HVL vs LVL
 - Naïve vs treatment-experienced
 - G1a vs G1b
 - Listed for LTx 93 cases SVR 12–83%

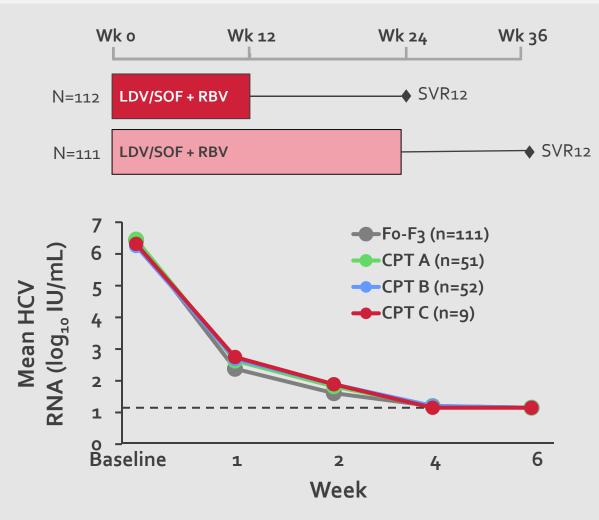
The use of SMV and SOF to treat HCV G1 in the liver transplant setting: The experience in 3 US centers (cont)

100% (13/13) of virologic failures had cirrhosis vs 78% (68/88) of SVR4,
 p<0.05

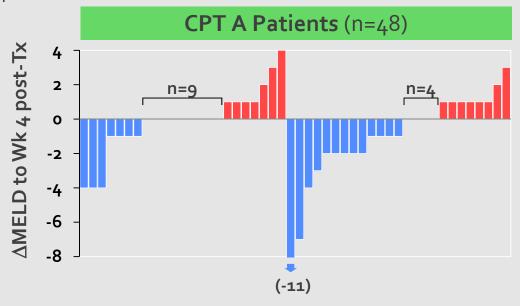

Adverse events	
Any adverse events, n	15 (10%)
Hyperbilirubinemia	4 patients (3%)
Grade 1–2 (bilirubin 1–2x ULN) Completed 12 weeks	2 patients (1%)
Grade 3–4 (bilirubin >3x ULN) Treatment stopped (Wk 8, Wk 11) Both achieved SVR4	2 patients (1%)
Anemia (Grade 1–2)	2 patients (1%)

- Low SVR in decompensated patients
- Few cases of hyperbilirubinemia (3%)
- SMV/SOF: very effective therapy
 - May not need RBV in non-cirrhotic, easy-to-treat patient
 - More convenient regimens are available
- SVR4 is a surrogate of SVR12?


LDV/SOF + RBV for the treatment of HCV in patients with post-transplant recurrence: Preliminary results of a prospective, multicenter study


- 223 post-transplant patients
- G1 or G4 treatment-naïve or treatment-experienced
- Stratified at Screening: Fo–F₃, CPT A, B, C
- RBV dose escalation in CPT B and C

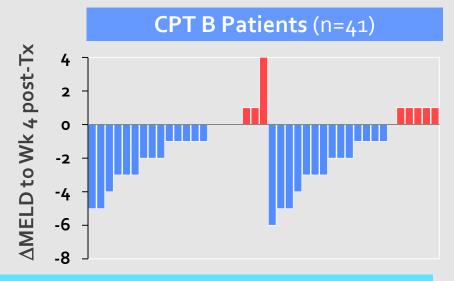
6 virologic failures (relapse)



LDV/SOF + RBV for the treatment of HCV in patients with post-transplant recurrence: Preliminary results of a prospective, multicenter study (cont)

Efficacy

- Significant improvement in albumin, bilirubin in both 12- and 24-week arms and CPT A or B
- Overall improvement in MELD


- In recurrent HCV, LDV/SOF+RBV for 12 or 24 weeks had high SVR, including advanced disease
- Early improvements in bilirubin, albumin, and MELD
- Safe and well-tolerated including RBV S/Es

LDV/SOF + RBV for the treatment of HCV in patients with post-transplant recurrence: Preliminary results of a prospective, multicenter study (cont)

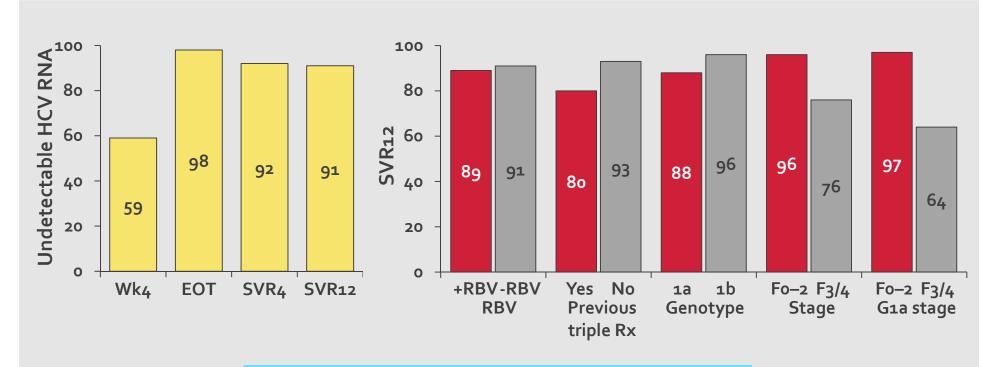
Safety

- 7 deaths (4 on treatment)
- 46 SAEs (6 treatment-related)
- 6 treatment-related discontinuations

- No on-treatment virologic failure
- Same rate of viral decline in CPT-c.f. SOF/RBV
- Reduce the need for re-transplantation?
- Only 12-week duration needed?

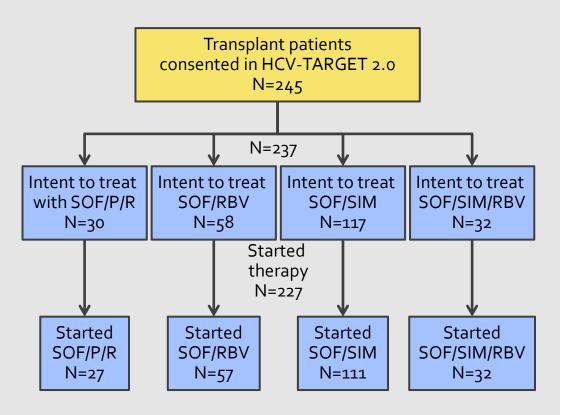
OPTIONS FROM AASLD THERAPY: 2014

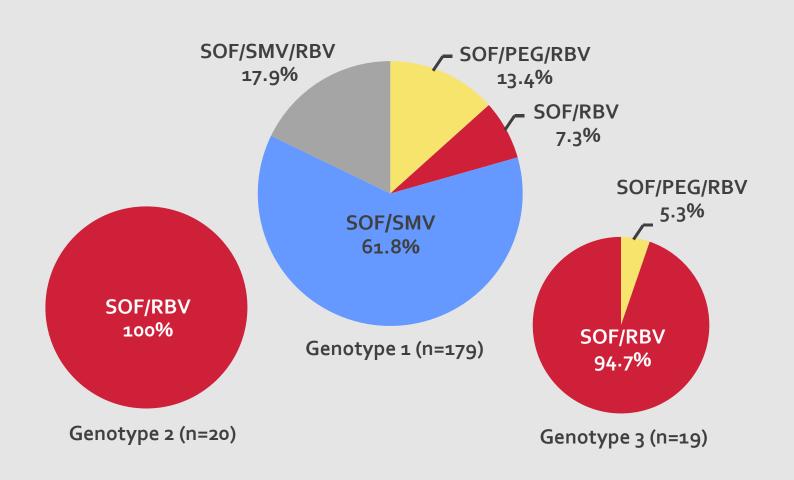
Multicenter experience using SOF and SMV ± RBV to treat HCV G1 after liver transplantation


- 109 transplant recipients with HCV

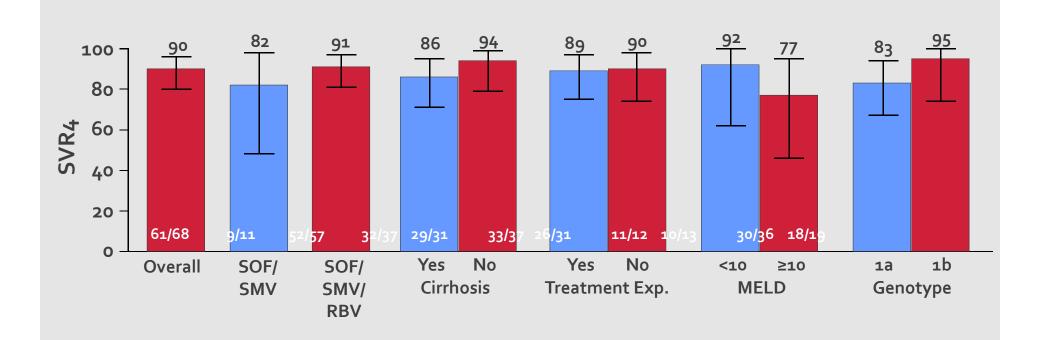
 SOF/SMV ± RBV for
 12 weeks
- Mean age 61 ± 6 years
- Median 29 months post-OLT
- 82% treatment failures (12% PI)
- 29% F3/4; 11% FCH
- 98 on Tac, 9 CyA, 1 SIR

- Minimal effect on Tac levels, no rejection
- 42% anemia in RBV patients
 - 100% dose reduction;50% EPO
- One case of acute pancreatitis (Day 5)
- 1 case acute lung injury
 (D14)⇒ died


Multicenter experience using SOF and SMV ± THERAPY. RBV to treat HCV G1 after liver transplantation (cont)


- SOF/SMV ± RBV for 12 weeks SVR 91%
- Relationship to SAEs?
- Reduced efficacy in G1a ⇒ Impact of Q8oK?
- RBV-associated toxicity with no added benefit

- HCV-TARGET 2.0: US/Canada/ Germany real-world study of SOF treatment post-OLT
 - 245 patients across 53 centers
 - Data from all treatmentrecipients started on SOF
 - Mean age 6o (20% >65 yrs)
 - 56% cirrhosis; 31% MELD >10
 - SVR4 data on 159



Safety

	SOF PEG RBV	SOF RBV	$SOFSMV\pm RBV$	Total*
	(N=27)	(N=57)	(N=143)	(N=227)
Completed treatment, n (%)	24 (88.9)	31 (54.4)	102 (74.4)	157 (69.2)
Ongoing treatment, n (%)	3 (11.1)	24 (42.1)	28 (25.2)	63 (27.8)
D/C prematurely, n (%)	0	2 (3.5)	4 (3.5)	7 (3.1)
AE, n (%)	0	1 (1.8)	3 (2.7)	5 (2.2)
Death, n (%)	0	0	2 (1.8)	3 (1.3)

- AEs, mild and manageable
- SAEs 8.5%
 - SOF-based therapy safe and effective post-OLT, despite >50% with advanced graft disease
 - Lower SVR in 1a due to Q8oK?
 - Benefit of RBV in 12 week SIM/SOF
 - Should treat earlier when IMS lowered but before onset of cirrhosis?